Post-perovskite Transition in Anti-structure

نویسندگان

  • Bosen Wang
  • Kenya Ohgushi
چکیده

The discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO3 under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected. We here report a new-type of materials Cr3AX (A = Ga, Ge; X = C, N), which exhibits the post-perovskite transition as a function of "chemical pressure" at ambient physical pressure. The detailed structural analysis indicates that the tolerance factor, which is the measure of the ionic radius mismatch, plays the key role in the post-perovskite transition. Moreover, we found a tetragonal perovskite structure with loss of inversion symmetry between the cubic perovskite and orthorhombic post-perovskite structures. This finding stimulates a search for a ferroelectric state in MgSiO3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasticity of AlFeO(3) and FeAlO(3) perovskite and post-perovskite from first-principles calculations

[1] We use state‐of‐the‐art ab initio calculations based on the generalized gradient approximation of the density functional theory in the planar augmented wavefunction formalism to determine the elastic constants tensor of perovskite and post‐perovskite with formulas AlFeO3 and FeAlO3 in which Fe or Al respectively occupy only octahedral sites, for the stable magnetic configurations. The phase...

متن کامل

High temperature elastic anisotropy of the perovskite and post- perovskite polymorphs of Al2O3

[1] Finite temperature ab initio molecular dynamics calculations were performed to determine the high temperature elastic and seismic properties of the perovskite and post-perovskite phases of pure endmember Al2O3. The post-perovskite phase exhibits very large degrees of shear-wave splitting. The incorporation of a few mole percent of Al2O3 into MgSiO3 is predicted to have little effect on the ...

متن کامل

Post-perovskite phase transition in MgSiO3.

In situ x-ray diffraction measurements of MgSiO3 were performed at high pressure and temperature similar to the conditions at Earth's core-mantle boundary. Results demonstrate that MgSiO3 perovskite transforms to a new high-pressure form with stacked SiO6-octahedral sheet structure above 125 gigapascals and 2500 kelvin (2700-kilometer depth near the base of the mantle) with an increase in densi...

متن کامل

Superconductivity in anti-post-perovskite vanadium compounds

Superconductivity, which is a quantum state induced by spontaneous gauge symmetry breaking, frequently emerges in low-dimensional materials. Hence, low dimensionality has long been considered as necessary to achieve high superconducting transition temperatures (TC). The recently discovered post-perovskite (ppv) MgSiO3, which constitutes the Earth's lowermost mantle (D" layer), has attracted sig...

متن کامل

Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases

[1] The athermal elastic constants of the perovskite and post-perovskite polymorphs of pure end-member FeSiO3 were calculated from ab initio calculations. We predict that incorporating ten mole percent FeSiO3 together with four mole percent Al2O3 into MgSiO3 reduces the perovskite to post-perovskite phase transition pressure by 5 GPa. Small changes in the seismic properties of the post-perovski...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016